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AbstrAct

Large sample standard errors of linear equating for the single-group design are derived

without the normality assumption. Two general methods based on the delta method are

described. One method uses the exact partial derivatives, and the other uses numerical

derivatives. Simulation and real test data are used to evaluate the behavior of the estimated

standard errors. Comparisons with smdard errors derived with the normality assumption and

bootstrap method are also conducted. The results indicate that the standard errors derived in this

paper agree with those computed by the bootstrap method and are more accurate than the

standard errors based on the normality assumption, especially in the situation in which the score

distributions are skewed.
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Standard Errors of Linear Equating far the Single-Group Design

In linear equating, scores on one test form are transformed linearly to scores on the scale

of another form. The purpose of linear equating is to adjust for presumably small differences in

test difficulty between the two forms of the same test. The single-group design is one of the

basic data collection schemes. In this design, examinees are administered both forms of a test to

be equated. An advantage of this design is that the equating errors are relatively small

compared to that of some other designs. However, the order of administering the two forms

may have an influence on the examinees' performance. For example, if familiarity with the test

increases performance, then the form administered last would appear easier than the form

administered first, supposing the two forms are equally difficult. Such an effect is usually

referred to as a practice effect. One way to minimize the practice effect is to administer the two

forms, say, A and B, in a way such that a random half of the examinees take Form A first and

another half of the examinees take Form B first. Thus, the order of administration of the two

forms are counterbalanced. Lord (1950), Angoff (1984), and Petersen, Kolen and Hoover

(1985) have presented descriptions of this design. Holland and Thayer (1990) addressed the

issue of counterbalancing in detail.

Because equating is usually conducted using a sample of examinees drawn from a

population, the results are subject to sampling error. The errors of equating can be quantified

using standard errors. Standancl errors of linear equating for the single-group design were

derived by Lord (1950) under the assumption that the two test scores have ai normal bivariate

distribution in the population from which the sample is drawn. Because skewed score

disTributions are typical in many testing programs (Kolen, 1985), the normality assumption is

seldom met. However, the standard error of equating for thf.r single-group design with less

restrictive assumptions has not been derived. Braun and Holland (1982) derived standard errors

for the random groups design. and Kolen (1985) derived standard errors for the common-item

nonequivalent-groups design. without making the restrictive normality assumption. Their

results suggested that standard errors of linear equating based on the normality assumption

might produce misleading results when score distributions are skewed or more peaked than a
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normal distribution. The purpose of this paper is to derive large sample standard errors of linear

equating for the single-group design without making the normality assumption. Two general

methods based on the delta method (Kendall and Stuart, 1977) are described. In one method the

exact derivatives are used and in the other the numerical derivatives are used. Simulation and

real test data are used to evaluate the behavior of the estimated standard errors. A comparison

with standard errors derived with the normality assumption is also conducted.

LargOamaltStandattErtail

Kendall and Stuart (1977) described a general method for estimating standard errors of

functions of random variables by means of a Taylor expansion. This method is usually referred

to as the delta method. According to Lord (1950). the linear equating function for equating two

test forms, X and Y, under the single-group design can be written as

if xlp(X). 4:32(X), p(Y). cy2(Y))
a(Y)

- p(X)] + p(Y) .

c(X)
(1)

1t is assumed here that the form taken first has no effect on the performance on the form taken

last. Let 01, 02, 03. and 04 be alternative names for the four parameter p(X), 02(X), p(Y), cr2(Y)

in function 1, and let their estimates be 81, 02, 03, and 04. Define '1% as an estimate of ithat uses

the estimates of the parameters in Equation 1. According to the delta method described by

Kendall and Stuart (1977) the sampling variance of can be expressed as follows:

4 Di A 4 4 (-)7

varlf (x)I = ()2 vara) + Cov(gilip + remainder.
i=l aei i=l ()O.;

(2)

The term "remainder" in Equation 2 refers to higher order terms in the Taylor expansion that are

small and thus can be ignored.

The standard error of equating SHP (x)1 is the square root of varri (x)I. To compute

var.!? (s)). we need to find the four first partial derivatives with respect to each of the four

parameters. the four sampling variances and 12 covariances of the four parameters. These
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sampling variances and covariances are listed in Table 1. Because cov(0i,k) = cov(0j,0;), only

six different covariances are listed. The calculation of the sampling variance If I (x), without

assuming a normal distribution, involves estimating higher order central moments and cross-

product moments. Because the higher order moments are very sensitive to sampling variatim a

large sample size might be required to ensure accurate estimates of standard errors. So if the

sample size is not large enough the standard errors computed from Equation 2 might not be

accurate.

Insert Table 1 about here

The first partial derivatives of I with respect to each of the four parameters in the

equating function are derived as follows:

az a(Y)=
(3)ao1 s(X)

az am 05(Y)= - Ix - 1.1(X)) = - Z. (4)ae2 203(X) 202(X)

az

(5)ao3

and

ix - ix(X)1- Z,
a04 20(X)a(Y) 2a(Y)

x g(X)
where Z -

Substituting the four partial derivatives into Equation 2, a formula for computing the

sampling variance of linear equating for the single-group design is obtairrd as follows:

(6)
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Aft, A,
Mit (X)] = V -132(Y) varicrA2(X)1 - covich(X),04(Y)1 +

1

vada'(U1
404(X) 4cr2(Y)

01Y) la(y) *kr2(X)]
I A A --coyAvy-% sa2(X).z - covilivn4,

a(X)
covligna2C"

02(X)a3(X)

1 A A CRY) A 20(Y) A A
colf111.(Y),052(YM varfp(X)1 - covEg(X),g(Y)] + varta(Y)1, (7)

0(Y) 02(X) a(X)

where 2 is the same as defiaed in Equations 4 and 6, the var's and cov's are defmed in Table 1

under the label of "general".

The partial derivatives can also be computed numerically. Lord (1950) used numerical

derivatives in the computation of asymptotic sampling variance. Let ft denote the entire vector

of values Esi, i=1 to 4. Then the fust partial derivatives of function / with respect to %can be

approximated by

al Axle+ n,
)2

hi
(xli l - 0(h 2)

ao,
),

where j is the ith row of the diagonal matrix 4, where

hi

and 0(h2) is the error of approximation. Because Equation 8 is derived by expanding 1(xID)

at two neighboring points (1)+ and ( 1 with a second order Taylor's series, the

magnitude of the error is based on the magnitude of the third partial derivative. If the third

partial derivative with respect to 0; is zero, then the first partial derivative with irspect to ei

approximated by Equation 8 is the exact value. For example, approximate / a03 as

(8)
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000 0(Y)
-

ai croo 000=
ao3 jt.t(y) 2h3

2h3 '

which is the exact derivative defined by Equation 5. Alternatively, if the function has a nonzero

third partial derivative, then error will be involved in the approximation. The error of

approximation is bounded by C h2i, where C is the maximum absolute value of the third partial

derivative with respect to O. Equation 8 suggests that the numerical derivative approaches the

exact derivative as hi approaches zero. But in actual computation, a too small hi cannot be

used, because hi is used as a denominator. If the denominator is too small, the computer

rounding error will become significant. As a result, the obtained numerical derivative may be

incorrect. In present paper, hi is set to 01/1000. This value was selected to yield desirable

accuracy. More detailed discussion of numerical derivative with more than one variable can be

found in many advanced calculus textbooks (e.g., Taylor and Mann, 1983).

In the present paper, the delta method is implemented using Equation 7, which uses the

exact derivatives, as well as using Equation 2 with numerical derivatives approximated by

Equation 8. Note that many of the expressions are presented with population parameters. In

actual computation, the sample estimates for the parameters are substituted in the formulas.

5E)3ased on the Normalkv Assumption

If the score distributions of Forms X and Y are assumed to be bivariate normal, then the

sampling covariances covl111(X)232(X)1, cov(11(X),(A32(Y)), covic.(Y),;2(X)1 and
A

covh,tA(Y),0-(Y)1have zero values (Kendall, and Stuart, 1977, p. 85). The variances and

covariances based on the normality assumption are listed in Table 1 under the label of

"Normal". Substitute these variances and covariance and the exact derivatives into Equation 2

to obtain

1 1
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02(y) a2(x) 02(y) 2a4(X) 02(Y) 1 204(Y)
z2 22

fla2(X) n 404(X) 402(y)

z- 2 2
a(Y) a(X,Y) o(Y) 1 202(c Y)

- n
o(X) 11 2452(X) 20(Y)

=1_1.1 12a2(y) + cy2(y) Z2 - 2
a(Y) a(X,Y) a2(X,Y) Z21

a(X) 02(x)

a(X,Y) iSubstituting pxy = nto the above expression gives
a(X)a(Y)

(9)

02(y) 7 02C0
varit (x)] = 12 + Z2 2pxy Oxy Z-1 (1 - pxy) 1Z2 (1 + pxy) + 2 1 (10)

Equation 10 is the same as the standard error formula derived by Lord (1950) with the normality

assumption. The standard error of equating is the square root of varlt (x)). Equation 10 is valid

only in the situation in which the distributions of X and Y are bivariate normal.

Computer Simulatitm

A computer simulation was conducted to study the behavior of the standard errors of

linear equating for the single-group design. Simulated scores were geneiated to reflect two

kinds of testing situations. In the first situation, the score distribution is Learly symmetric and

the simulation is referred to as the nearly symmetric simulation. In the second situation, the

score distribution is negatively skewed and the simulation is referred to as the nonsymmetric

simulation. The beta-binomial model (Lord & Novick, 1968, chap. 23) was selected to generate

observed scores. For the nonsymmetric simulation, the beta true score distributions were

assigned parameters 20.7 and 7 to simulate the score distributions similar to those of a real

professional certification examination (see the example used in next section of this paper).

These parameters were selected through a trial-and-error procedure. For the nearly symmetric

simulation the beta true score distributions were assigned parameters 15 and 14.5. Both tests

were simulated to have 75 items. The simulation was conducted using the following steps:
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1) Randomly generate a beta variate using the parameters associated with the desired

distribution. This beta variate, p, represents an examinees proportion-correct true score. An

a!gorithm described by Cheng (1978) was used to gener ..v. the beta variate.

2) Given the proponion-correct true score, p, in step 1, randomly generate two binomial

variates with the number of txial parameter equal to 75. These two binomial variates represent

observed scores on two 75-item Forms, X and Y, respectively. A function called BNLDEV

described in Numerical Recipes (Press, Flannery, Teukolsky & Vetter lin, 1990, p. 218) was

used to generate the binomial variates.

3) Repeat steps 1 and 2 n times, where n represents the sample size used in the

simulation. Thus, a set of n pairs of observed scores for Forms X and Y were obtained.

4) Equate Forms X and Y using the data resulting from step 3. Compute the Y

equivalent of X at the selected X levels, and compute the standard errors using the following

three methods: (a) with the normality assumption; (b) the delta method with numerical

derivatives; and (c) the delta method with exact derivatives.

This process was replicated 500 times. "The Form Y equivalents and the three standard

errors at the selected X levels were averaged over the 500 replications. The "true" standard

errors of equating were computed. The "true" standard error of equating for a given score on

Form X was defmed here as the standard deviation of Form Y equivalents of that score over the

500 replications. The simulation was conducted using sample size of 100 and 500 examinees.

The descriptive statistics for the simulated observed score distributions are listed in

Table 2. These statistics are the averages computed over the 500 replications. The means for

Form X are slightly higher than those for Form Y. In the nonsymmetric simulations, the score

distributions are negatively skewed.

Insert Table 2 about here

The results of the simulation are summarized in Table 3 at the selected Form X sixre

levels_ The standard errors estimated by the three methods are the average values over the 500

13
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replications. The accuracy of the three standard errors can be evaluated by comparing the bias

which is the difference between the "true" standard error and the average standard errors

estimated by the three methods. The standard deviations of estimations are also listed in

Table 3.

All the standard errors listed in Table 3 show a general pattern of the standard errors

being smaller near the mean of the score distribution than at the extremes. Also, the standard

errors become smaller as the sample size gets larger.

Insert Table 3 about here

The standard errors computed by the delta method with numerical and exact derivatives

are almost identical at all selected score levels in both the nearly symmetric and nonsymmetric

simulations. In the nearly symmetric simulations, the simulated score distributions are very

close to the normal distribution. The standard errors based on the normality assumption are

very close to those calculated without normality assumption (see Table 3). In the simulation

with the smaller sample Eize (n=l00), the standard errors based on the normality assumption are

closer to the "true" values than those without the normality assumption. But in the simulations

with a larger sample size (n=500), the standard errors computed by the delta method are closer

to the "true" values than those based on the normality as-umption at most of the selected score

levels.

In the nonsymmetric simulations, the differences between the standard errors based on

the normality assumption and those without normality assumption are larger than those in the

nearly symmetric simulations (see Table 3). The standard errors computed by the delta method

are very close to the "true" values, and the standard errors based on the normality assumption

are more biased. The method based on the normality assumption tends to underestimate the

standard errors at lower scores and to overestimate them at higher scores for the negatively

skewed scote distribution.
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The standard deviation of the estimated standard errors computed over the 5(X)

replications is a measure of variability in estimating standard errors. The simulation results in

Table 3 indicated that the staadard errors estimated by the formula based on the normality

assumption are generally less variable over the 500 replications than those based on the less

restrictive assumption. An explanation given by Kolen (1985) is that the normal standard errors

requires estimation of only means and variances, whereas the estimation of normormal standard

errors requires the estimation of these parameters as well as high-order central moments and

cross-product moments. Because high-order central moments and cross-product moments are

very sensitive to sampling variation, the estimation of nonnormal standard errors are more

variable over the replications.

AleaLibititExamsk

Data from a 150-item multiple-choice professional licensure examination were used in

this example. The 150-item test Ives divided by odd-even splits into two half tests. These two

half tests were designated as Form X and Form Y. Each form consisted of 75 items. Data

obtained from 500 examinees were used in this example. The descriptive statistics for the

sample are listed in Table 4. The mean scores for both forms indicate that approximately 73

percent of the items were answered correctly on average. The score distributions of both forms

are considerably skewed.

Insert Table 4 about here

Bootstrap standard errors were also computed from 1000 bootstrap replications using

the procedure described by Kolen (1985). Efron (1982) presented a variety of examples in

which standard enors computed from bootstrap method were more accurate for small sample

situations than standard errors based on the delta method. In the present paper. the bootstrap

standard errors are used for evaluating the accuracy of standard errors based on the normality

assumption and standard errors without the normality assumption.

15
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Results from linear equating and standard errors of equating computed in four different

ways at the selected score levels are given in Table 5. The standard errors computed using the

delta method with numerical verivatives are almost identical to those using the delta method

with exact derivatives at all the selected score levels (the maximum difference is 0.001). The

standard errors calculated without the normality assumption are very close to the bootstrap

standard errors. In fact, the standard errors computed using the two delta methods agree with

those computed by bootstrap method to two decimal places. In general, the standard errors are

the smallest near the mean, and become larger farther away from the mean. The standard errors

based on the normality assumption are smaller at the lower scores and larger at the higher scores

than those for the other methods.

Insert Table 5 about here

Discussion And Conclusion

Three methods of estimating standard errors of linear equating for the single-group

design were compared in this paper by using simulation and real test data. The results of the

simulation suggest that when the score distributions are symmetric or nearly symmetric the

standard errors computed based on the normality assumption and the delta method with

numerical and exact derivatives are very similar to each other. When the score distributions are

skewed, the results obtained from both the simulation and real data suggest that the standard

errors derived without the normality assumption are less biased than those based on the

normality assumption. In terms of variability in estimation, the standard errors based on the

normality assumption are less variable than those derived without such an assumption.

The bootstrap method can yield accurate esfimates of standard errors. However, the

bootstrap method is very time consuming, because the number of resamplings must be large for

the bootstrap standard errors to be accurate. The delta methods might be preferable because

they yield accurate results with considerably less computation.
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The standard errors computed by the delta method with numerical and exact partial

derivatives were almost identical. The advantage of using the exact partial derivatives is that an

equation can be provided for calculating the standard errors. But the delta method with

numerical derivatives is often much simpler to compute and to program on a computer than the

method with exact derivatives. This advantage is not that pronounced in computing the standard

errors of linear equating under single-group design, because the linear function for this design is

simple and involves only four simple first-order partial derivative. But for some more

complicated equating designs, like the common-item nonequivalent-group design (Kolen.

1985), using numerical derivatives has the capacity to make the computation dramatically less

complicated than using the exact derivatives.

Another advantage of using numerical derivatives is that it is easier to develop a general

computer algorithm for computing the standard errors of equating with different methods (Lord.

1975). A major task in deriving standard errors of equating with the delta method is to derive

the partial derivatives with respect to each parameter involved in the equating function. For a

different equating method a different set of partial derivatives need to be derived. If numerical

derivatives are used there is no need to derive analytical formulas for all the partial derivatives.

Thus, a general computation algorithm can estimate standard errors for different equating

methods by just changing the equating function accordingly. The delta method with numerical

derivatives might also prove useful for estimating standard errors under complicated designs

such as chains of equatings.
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Table 1. Sampling Variances and Covariances of Bivariate Moments

Statistic(s) Sampling Variances and Covariances
General Normal

vara001 02(X)/n

varg'52(X)1 {E[xii(X)]4 -

var[ji(Y)]

varA2(r) {E[y-ig1014 0401)/n

cova(X),I1(Y)1

covill(X),4a2(X)1 EIX-1.t(X)13/n 0

cova(X,1a2(y)) E[xigX)liy-g(Y)l2 /n 0

cov[a2(X)A2(Y)] (Eix-g(X)12 1yig1012 02(X)432(Y))/n 2a2(X,Y)/n

cov[a2(X),a(r) {Elx-A(X)12 iy-11(Y)))/11

cov1(Y)A2(Y)] Efy -g(Y)]3//1 0

02(X)/n

2a4(X)/n

a2(Y)/n

204(Y)/n

a(X,Y)/n

Note: The terms in the body of the table were adapted from Kolen (1985), and are typically
based on large sample theory. E refers to expected value. n is the sample size.
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Table 2 Descriptive Statistics of Simulated Scores

Form mean s.d. skewness kurtosis

Nearly Symmetric, n=100

X 39.46 7.95 -0.04 -0.23

38.84 7.93 -0.03 -0.24

Nearly Symmetric, n=500

X 39.41 8.00 -0.04 -0.21

38.82 8.00 -0.04 -0.20

Nonsymmetric, n=100

X 57.30 6.71 -0.42 0.04

56.71 6.71 -0.41 0.02

Nonsymmetric, n-500

X 57.30 6.78 -0.44 0.07

56.72 6.80 -0.43 0.07
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Table 3. Results for Two Simulations at Two Sample Sizes

Standard Errors Standard Deviation
of Estimates

x t (x) 'true' Norm. Num. Exact Norm. Num. Exact

Nearly Symmetric Simulation
n = 100

10 9.35 2.173 2.097 2.049 2.049 0.2069 0.2779 0.2779
20 19.36 1.519 1.442 1.427 1.427 0.1422 0.1945 0.1946
30 29.37 0.933 0.858 0.869 0.870 0.0813 0.1127 0.1127
40 39.38 0.641 0.602 0.597 0.597 0.0481 0.0494 0.0494
50 49.39 0.963 0.980 0.912 0.912 0.0954 0.1166 0.1167
60 59.40 1.556 1.590 1.479 1.480 0.1563 0.1943 0.1943
70 69.41 2.212 2.252 2.104 2.105 0.2210 0.2761 0.2763
80 79.41 2.888 2.930 2.746 2.748 0.2874 0.3605 0.3607

n =, 500

10 9.38 0.912 0.935 0.923 0.923 0.0414 0.0529 0.0529
20 19.38 0.633 0.643 0.643 0.643 0.0285 0.0365 0.0365
30 29.39 0.386 0.383 0.392 0.392 0.0164 0.0207 0.0207
40 39.40 0.278 0.271 0.269 0.269 0.0094 0.0092 0.0092
50 49.41 0.429 0.439 0.411 0.411 0.0189 0.0241 0.0241
60 59.42 0.686 0.711 0.666 0.666 0.0311 0.0403 0.0403
70 69.43 0.967 1.006 0.947 0.948 0.0440 0.0569 0.0569
80 79.44 1.257 1.308 1.236 1.237 0.0572 0.0738 0.0739

Nonsymmetric Simulation
n = 100

10 9.25 3.562 3.315 3.423 3.424 0.3472 0.5527 0.5530
20 19.28 2.851 2.624 2.738 2.739 0.2757 0.4434 0.4436
30 29.32 2.147 1.941 2.060 2.061 0.2048 0.3340 0.3342
40 39.35 1.459 1.278 1.397 1.398 0.1352 0.2245 0.2246
50 49.38 0.829 0.694 0.789 0.790 0.0687 0.1130 0.1131
60 59.42 0.534 0.558 0.504 0.504 0.0522 0.0436 0.0436
70 69.45 0.960 1.061 0.921 0.921 0.1084 0.1209 0.1209
80 79.49 1.611 1.710 1.551 1.552 0.1747 0.2225 0.2226

n = 500

10 9.24 1.691 1.473 1.556 1.557 0.0667 0.1153 0.1154
20 19.28 1.356 1.167 1.245 1.246 0.0530 0.0928 0.0928
30 29.32 1.024 0.963 0.937 0.938 0.0393 0.0702 0.0702
40 39.36 0.699 0.569 0.636 0.636 0.0259 0.0475 0.0475
50 49.39 0.394 0.310 0.359 0.359 0.0130 0.0240 0.0240
60 59.43 0.227 0.250 0.226 0.226 0.0099 0.0091 0.0091
70 69.47 0.420 0.472 0.414 0.415 0.0203 0.0235 0.0235
80 79.51 0.728 0.760 0.700 0.701 0.0329 0.0440 0.0440

f..)1
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Table 4 Descriptive Statistics for
a Professional Certification Examination

Form mean S. D. skewness kurtosis

X 55.694
55.594

5.719
5.697

-0.657
-0.527

0.493
-0.044

Table 5 Standard Errors of Linear Equatings for
a Professional Certification Examination

t(x) Boot. Norm. Numer. Exact.

10 10.158 1.578 1.540 1.569 1.570
15 15.131 1.415 1.374 1.406 1.407

20 20.104 1.251 1.209 1.244 1.245
25 25.076 1.089 1.044 1.082 1.083
30 30.049 0.927 0.881 0.921 0.921
35 35.022 0.766 0.720 0.761 0.762

40 39.994 0.608 0.562 0.604 0.605
45 44.967 0.455 0.411 0.452 0.453
50 49.940 0.315 0.280 0.313 0.313
55 54.913 0.214 0.209 0.214 0.214

60 59.885 0.217 0.255 0.218 0.218
65 64.858 0.320 0.377 0.321 0.321
70 69.831 0.461 0.525 0.461 0.461
75 74.803 0.615 0.682 0.614 0.614
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